DPP - 2 (Gravitation)

Video Solution on Website:-

https://physicsaholics.com/home/courseDetails/99

Video Solution on YouTube:-

https://youtu.be/_1dp4g7M5Dk

Written Solution on Website:-

https://physicsaholics.com/note/notesDetalis/54

Q 1. Two particles of masses m and 2 m are at a distance 3 r apart at the ends of a straightline AB . C is the center of mass of the system. The magnitude of the gravitational intensity due to the masses at C is
(a) zero
(b) $\frac{7 G m}{4 r^{2}}$
(c) $\frac{9 G m}{4 r^{2}}$
(d) $\frac{3 G m}{2 r^{2}}$

Q 2. The distance of the centers of moon and the earth is D. The mass of the earth is 81 times the mass of the moon. At what distance from the center of the earth, the gravitational force will be zero:
(a) $\frac{D}{2}$
(b) $\frac{2 D}{3}$
(c) $\frac{4 D}{3}$
(d) $\frac{9 D}{10}$

Q 3. A point mass M is at a distance S from an infinitely long and thin rod of linear density D. If G is the grayitational constant, then gravitationalforce between the point mass and the rod is
(a) $2 \frac{M G D}{s}$
(b) $\frac{M G D}{s}$
(c) $\frac{M G D}{2 S}$
(d) $\frac{2 M G D}{3 S}$

Q 4. The gravitational field dueto a solid sphere of radius R and mass M at a point distant $\mathrm{R} / 2$ from the center of the sphere is
(a) zero
(b) $\frac{G M}{2 R^{2}}$
(c) $\frac{G M}{R^{2}}$
(d) $\frac{4 G M}{R^{2}}$

Q 5. The height above the surface of earth at which the gravitational field intensity is reduced to 1% of its value on the surface of earth is: [$R_{e}=$ radius of earth]
(a) $100 R_{e}$
(b) $10 R_{e}$
(c) $99 R_{e}$
(d) $9 R_{e}$

Q 6. The mass of the moon is $734 \times 10^{20} \mathrm{~kg}$ and the radius is $1.74 \times 10^{6} \mathrm{~m}$. The gravitational field strength at its surface is :
(a) $1.45 \mathrm{~N} / \mathrm{kg}$
(b) $1.55 \mathrm{~N} / \mathrm{kg}$
(c) $1.75 \mathrm{~N} / \mathrm{kg}$
(d) $1.62 \mathrm{~N} / \mathrm{kg}$

Q 7. If earth is supposed to be a sphere of radius R, if g_{30} is value of acceleration due to gravity at latitude of 30° and g at the equator, the value of $g-g_{30^{\circ}}$ [$\omega=$ angular velocity of rotation of earth about its axis, $\mathrm{R}=$ radius of earth]
(a) $\frac{5}{4} \omega^{2} R$
(b) $\frac{3}{4} \omega^{2} R$
(c) $\omega^{2} R$
(d) $\frac{1}{4} \omega^{2} R$

Q 8. A tunnel is dug along a diameter of the earth. The force on a particle of mass m placed in the tunnel at a distance x from the center is: [$M_{e}=$ mass of earth, $\mathrm{R}=$ radius of earth]
(a) $\frac{G M_{e} m}{R^{3}} x$
(b) $\frac{G M_{e} m}{R^{2}} x$
(c) $\frac{G M_{e} m}{R^{3} x}$
(d) $\frac{G M_{e}}{R^{3} x}$

Q 9. A uniform metal sphere of radius a and mass M is surrounded by a thin uniform spherical shell of equal mass and radius 4 a (figure) The center of the shell falls on the surface of the inner sphere. P_{1} is at a distance 4a from center of metal sphere. Find the gravitational field at the point P_{2} shown in the figure

(a) $\frac{61 G M}{900 a^{2}}$
(b) $\frac{16 G M}{3 a^{2}}$
(c) $\frac{35 G M}{161 a^{2}}$
(d) $\frac{51 G M}{90 a^{2}}$

Q 10. Two identical spherical balls each of mass m are placed as shown in figure. Plot the variation of g (gravitational intensity) along the x -axis.

(a)

(b)

(c)

(d)

Q 11. At what height from surface of earth the gravitational field reduces by 75% the gravitational field at the surface of earth ?
(a) R
(b) 2 R
(c) 3 R
(d) 4 R

Q 12. The gravitational field in a region is given by $\vec{E}=5 \hat{\imath}+12 \hat{\jmath}$ (in N/Kg). Find the magnitude of the gravitational force acting on a particle of mass 2 kg placed at the origin.
(a) 26 N
(b) 30 N
(c) 20 N
(d) 35 N

Q 13. The gravitational field in a region is $(10 \hat{\imath}-10 \hat{\jmath}) \mathrm{N} / \mathrm{kg}$. Find the work done by gravitational force to shift slowly a particle of mass 1 kg from point ($1 \mathrm{~m}, 1 \mathrm{~m}$) to a point ($2 \mathrm{~m},-2 \mathrm{~m}$).
(a) 10 J
(b) -10 J
(c) -40 J
(d) 40 J

Q 14. Two planets have the same ayerage density, but their radii are R_{1} and R_{2}. If acceleration due to gravity on these planets be g_{1} and g_{2} respectively, then
(a) $\frac{g_{1}}{g_{2}}=\frac{R_{1}}{R_{2}}$
(b) $\frac{g_{1}}{g_{2}}=\frac{R_{2}}{R_{1}}$
(c) $\frac{g_{1}}{g_{2}}=\frac{R_{1}^{2}}{R_{2}^{2}}$
(d) $\frac{g_{1}}{g_{2}}=\frac{R_{1}^{3}}{R_{2}^{3}}$

Q 15. Let the aceeleration due to gravity be g_{1} at a height h above the earth's surface, and g_{2} at a depth d below the earth's surface. If $g_{1}=g_{2}, \mathrm{~h} \ll \mathrm{R}$ and $\mathrm{d} \ll \mathrm{R}$ then
(a) $h=\mathrm{d}$
(b) $\mathrm{h}=2 \mathrm{~d}$
(c) $2 \mathrm{~h}=\mathrm{d}$
(d) it is not possible for g_{1} to be equal to g_{2}

Q 16. What would be the value of acceleration due to gravity at a point 5 km below the earth's surface?
($R_{e}=6400 \mathrm{~km}, g_{E}=9.8 \mathrm{~m} / \mathrm{s}^{2}$)
(a) $9.6 \mathrm{~m} / \mathrm{s}^{2}$
(b) $9.79 \mathrm{~m} / \mathrm{s}^{2}$
(c) $9.89 \mathrm{~m} / \mathrm{s}^{2}$
(d) $10 \mathrm{~m} / \mathrm{s}^{2}$

Q 17. What will be the acceleration due to gravity at a distance of 3200 km below the surface of the earth ? [Take $R_{e}=6400 \mathrm{~km}$]
(a) $2.7 \mathrm{~m} / \mathrm{s}^{2}$
(b) $4.9 \mathrm{~m} / \mathrm{s}^{2}$
(c) $9.8 \mathrm{~m} / \mathrm{s}^{2}$
(d) $19.6 \mathrm{~m} / \mathrm{s}^{2}$

Q 18. From a solid sphere of mass M and radius R, a solid sphere of radius $R / 2$ is removed as shown. Find gravitational force on mass m as shown

(a) $\frac{5}{12} \frac{G M m}{R^{2}}$ towards left
(b) $\frac{7}{36} \frac{G M m}{R^{2}}$ towards left
(c) $\frac{3}{17} \frac{G M m}{R^{2}}$ towards right
(d) $\frac{9}{11} \frac{G M m}{R^{2}}$ towards right

Answer Key

Q. 1 b	Q. 2 d	Q. 3 a	Q. 4 b	Q. 5 d
Q. 6 d	Q. 7 d	Q. 8 a	Q. 9 a	Q. 10 a
Q. 11 a	Q. 12 a	Q. 13 d	Q. 14 a	Q. 15 c
Q. 16 b	Q. 17 b	Q. 18 b		

